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1 Introduction

In recent years semi-inclusive deep inelastic scattering (SIDIS) has received much attention

as a tool to investigate various aspects of hadron structure, such as the flavor dependence

of the nucleon’s parton distribution functions, both unpolarized and polarized, through

flavor tagging of hadrons in the final state. Observation of the momentum distribution

of produced hadrons also allows access to the largely unexplored transverse momentum

dependent parton distributions, which reveal a much richer landscape of the spin and

momentum distribution of quarks in the nucleon, and which are the subject of increasingly

greater focus at modern facilities such as Jefferson Lab.

At high energies the scattering and hadronization components of the SIDIS process

factorize and the cross section can be represented as a product of parton distribution and

fragmentation functions. In practice, however, experiments are often carried out at few-

GeV energies with Q2 as low as 1 GeV2, suggesting that 1/Q2 power corrections must be

controlled in order to determine the applicability of partonic analyses of the data.

One of the standard finite-Q2 corrections that must be applied in analyses of inclusive

deep inelastic scattering (DIS) data is target mass corrections (TMCs) [1]. Kinematical in

origin, TMCs arise from leading twist operators in QCD, but enter as 1/Q2 corrections to

structure functions [2]. They are especially egregious at high values of the Bjorken scaling

variable xB, even at relatively large Q2, and are crucial for reliable extractions of parton

distributions in this region. To date, however, the phenomenology of TMCs has not been

systematically considered in SIDIS, and we do so in this paper.

Target mass corrections in inclusive DIS have usually been formulated within the op-

erator product expansion, in which the subleading 1/Q2 corrections arise from twist-two
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operators involving derivative insertions into quark bilinears [3–9]. Unfortunately, this

method cannot be rigorously extended to the production of hadrons in the final state. An

alternative approach to computing TMCs makes use of the collinear factorization (CF)

framework [10–12], which has recently been used in both unpolarized [13–15] and polar-

ized [16] inclusive DIS. Because here one works directly in momentum space, the method

can be readily extended to SIDIS. In contrast to inclusive DIS, where the only mass scale

entering the problem is that of the target hadron, in SIDIS finite-Q2 corrections arise from

both the target mass and the mass of the produced hadron. For generality we shall refer

to their combined effects as “hadron mass corrections” (HMCs).

Hadron mass corrections in SIDIS at finite-Q2 kinematics in CF were considered previ-

ously in refs. [17, 18] in different collinear frames. Albino et al. [17] studied the effects of the

final state hadron mass, but did not consider the effects of the target mass. Mulders [18]

derived corrections due to both target and produced hadron mass, but did not discuss the

phenomenological consequences. Neither of these, however, addressed problems related to

kinematic thresholds.

In this work we use the CF framework to derive the mass corrections to the SIDIS

cross section at finite Q2, and systematically investigate their implications at kinematics

relevant to current experiments. The formalism is constructed specifically to ensure that

physical kinematic thresholds for the semi-inclusive process are explicitly respected. In

section 2 we review the collinear formalism and discuss its application to semi-inclusive

hadron production. To expose the origin of the corrections we work at leading order in

αs; next-to-leading order effects can be included in subsequent analyses. In section 3

we explore the relative importance of the HMCs numerically, and evaluate the size of

the corrections in the cross sections and fragmentation functions at various kinematics.

To assess their possible impact on data analyses, we also compare the magnitude of the

HMCs at kinematics typical of modern facilities, such as Jefferson Lab and HERMES, with

experimental errors from recent experiments. Finally, in section 4 we summarize our results

and outline avenues for future developments of this work. A discussion of the formulation

of HMCs in different collinear frames is presented in appendix A.

2 Semi-inclusive scattering at finite Q2

We begin the discussion of SIDIS at finite values of the photon virtuality Q2 by defining

the relevant kinematics and momentum variables in a collinear frame, and introduce the

hadronic tensor computed in a covariant parton model. Collinear factorization is then

performed in the leading order approximation in which the produced hadron is effectively

collinear with the scattered parton, which more directly reveals the effects of hadron masses

on the cross sections and fragmentation functions.
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2.1 External kinematics

The four-momenta of the target nucleon (p), virtual photon (q) and produced hadron h

(ph) can be decomposed in terms of light-cone unit vectors n and n as [10]

pµ = p+ nµ +
M2

2p+
nµ , (2.1a)

qµ = −ξp+ nµ +
Q2

2ξp+
nµ , (2.1b)

pµ
h =

ξm2
h⊥

ζhQ2
p+ nµ +

ζhQ
2

2ξp+
nµ + pµ

h⊥ , (2.1c)

where M is the target nucleon mass, Q2 = −q2, and the light-cone vectors satisfy n2 =

n2 = 0 and n · n = 1. Here we define light-cone components of any four-vector v by

v+ = v ·n = (v0 + vz)/
√

2 and v− = v ·n = (v0 − vz)/
√

2. The momenta p and q are chosen

to lie in the same plane as n and n, as for inclusive DIS. We call this the (p, q) collinear

frame; other possible choices are discussed and compared in appendix A. The nucleon plus-

momentum p+ can be interpreted as a parameter for boosts along the z-axis, connecting

the target rest frame to the infinite-momentum frame; the target rest frame (p+ = M/
√

2)

and the Breit frame (p+ = Q/(
√

2ξ)) are part of this family of frames. The transverse

momentum four-vector of the produced hadron pµ
h⊥ satisfies ph⊥ · n = ph⊥ · n = 0, and we

define the transverse mass squared as m2
h⊥ = m2

h − p2
h⊥, where mh is the produced hadron

mass, and the transverse four-vector squared is p2
h⊥ = −p 2

h⊥.

In the chosen collinear frame the variable ξ = −q+/p+ defined in eq. (2.1b) coincides

with the finite-Q2 Nachtmann scaling variable [2, 19],

ξ =
2xB

1 +
√

1 + 4x2
BM

2/Q2
, (2.2)

which in the Bjorken limit (Q2 → ∞ at fixed xB) reduces to the Bjorken scaling variable

xB = Q2/2p · q. The scaling fragmentation variable ζh = p−h /q
− defined in eq. (2.1c) is

related to the fragmentation invariant zh = ph · p/q · p by

ζh =
zh
2

ξ

xB

(

1 +

√

1 − 4x2
BM

2m2
h⊥

z2
h Q

4

)

, (2.3a)

and the positivity of the argument in the radical in eq. (2.3a) is ensured by the condition

Eh ≥ mh⊥, which imposes

zh ≥ zmin
h = 2xB

Mmh

Q2
. (2.3b)

One can also define ζh in terms of the invariant ηh = 2ph · q/q2 by

ζh =
ηh

2

(

1 +

√

1 +
4m2

h⊥

η2
h Q

2

)

, (2.3c)
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Figure 1. Kinematics of semi-inclusive deep inelastic lepton-nucleon scattering at leading order,

producing a final state hadron h. The momenta of the target nucleon (p), virtual photon (q),

incident (k) and scattered quarks (l), and the produced hadron (ph) are labeled explicitly, with Φ

and ∆ denoting the correlators relevant to the quark distribution and fragmentation functions. The

vertical dashed line represents the cut of the forward amplitude.

which is convenient for discriminating between the target and current fragmentation hemi-

spheres in hadron production. Note that in the target rest frame zh = Eh/ν is the usual

ratio of the produced hadron to virtual photon energies. In the Breit frame ηh = phz/qz is

the ratio of the longitudinal components of the hadron and photon energies, which can be

used to define the current (ηh > 0) and target (ηh < 0) hemispheres for hadron production.

In the Bjorken limit one has ζh → zh → ηh.

Conservation of four-momentum and baryon number impose an upper limit on the xB

variable,

xB ≤
(

1 +
m2

h + 2Mmh

Q2

)−1

≡ xmax
B , (2.4)

which corresponds to the exclusive production of a nucleon and a hadron h in the final

state. Similarly the limits on the fragmentation variable ζh are given by

ξ

1 − ξ

M2

Q2
≤ ζh ≤ 1 + ξ

M2

Q2
, (2.5)

where the lower limit corresponds to diffractive production of the hadron h, and the upper

limit reflects the fragmentation threshold, which approaches unity in the Bjorken limit.

2.2 Parton kinematics in collinear factorization

At the partonic level the SIDIS process at leading order in the strong coupling constant

αs is illustrated in figure 1. It proceeds through the scattering from a quark carrying a
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light-cone momentum fraction x = k+/p+, which then fragments to a hadron h carrying

a light-cone momentum fraction z = p−h /l
−, where k and l are the four-momenta of the

initial and scattered quarks. At higher orders the hard scattering can also take place from

a gluon, and additional partons can be created in the collision.

The parton momenta k and l can be parametrized in terms of the light-cone vectors n

and n as

kµ = xp+ n̄µ +
k2 + k2

⊥

2xp+
nµ + kµ

⊥ , (2.6a)

lµ =
l2 + l2⊥
2p−h /z

n̄µ +
p−h
z
nµ + lµ⊥ , (2.6b)

with the parton transverse momentum four-vectors k⊥ and l⊥ orthogonal to n and n.

In collinear factorization the hard scattering amplitude is expanded around on-shell and

collinear momenta k̃ and l̃,

k̃µ = xp+ n̄µ +
k̃2

2xp+
nµ (2.7a)

l̃µ =
l̃2 + p2

h⊥/z
2

2p−h /z
n̄µ +

p−h
z
nµ +

pµ
h⊥

z
, (2.7b)

where the initial and final collinear parton “masses” k̃2 and l̃2 are kept for generality.

Defining the invariant x̂ = −q2/2k̃ · q as the partonic analog of the Bjorken variable

xB , at finite Q2 one has

x̂ =
ξ

x

(

1 +
x

ξ

k̃2

Q2

)

. (2.8)

Using the methods described in ref. [15] one can show that for SIDIS cross sections inte-

grated over ph⊥, x̂ is constrained to be in the range

1 +
m2

h

ζhQ2
− k̃2

Q2

(

1 − ξm2
h

xζhQ2

)

≤ 1

x̂
≤ 1

xB

(

1 − xB
2Mmh + k̃2

Q2

)

, (2.9)

where the lower limit arises from the minimum of the current jet mass, and the upper limit

corresponds to collinear spectators with minimal mass. These limits agree with the limit

on xB in eq. (2.4) for any k̃2 ≥ x(ζh − 1)Q2/ξ. For the fragmentation process one finds

analogous limits on ζh,

ζh ≤ 1

z
ζh ≤ 1 +

ξ

x

k̃2

Q2
, (2.10)

which agrees with the limit in eq. (2.5), provided that k̃2 ≤ xM2. The requirement that

the collinear parton masses be independent of the parton momentum (viz., independent of

x) implies k̃2 ≤ 0. Combined with the above lower limit on k̃2, this naturally leads to a

collinear expansion around a massless initial state parton, k̃2 = 0.
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The choice of l̃2 is made by considering the cross section at leading order in αs. Four-

momentum conservation for the hard scattering, together with the choice k̃2 = 0, leads

to the relations x = ξ(1 + l̃2/Q2) ≡ ξh and z = ζh. Clearly z falls within the kinematic

limits (2.10). However, in order for x to respect the limits (2.9) we choose l̃2 = m2
h/ζh, in

which case

ξh = ξ

(

1 +
m2

h

ζhQ2

)

. (2.11)

While larger values of l̃2 would also allow x to fall within the limits (2.9), this choice is the

closest to the physical quark mass.

We stress that our prescription for the collinear parton masses k̃2 and l̃2 is dictated by

the external kinematic limits in eqs. (2.4) and (2.5), which are independent of the parton

model and collinear factorization approximations. As discussed in refs. [15, 21], this is

crucial when considering cross sections close to the kinematic limits, such as at large xB

or large zh. However, as we shall see in the next section, the SIDIS cross section can

also receive non-negligible corrections at small xB since ξh > ξ ≈ xB. This is qualitatively

different from the behavior of the target mass corrections in inclusive DIS, which are always

suppressed at small xB [15].

2.3 Hadron tensor and cross section at leading order

In collinear factorization the hadron tensor at leading order, to which we restrict the rest

of our analysis, can be written as

2MW µν(p, q, ph) =
∑

q

e2q

∫

d4k d4l δ(4)(k̃ + q − l̃) Tr[Φq(p, k) γ
µ ∆h

q (l, ph) γν ] , (2.12)

where the sum is taken over quark flavors q, and the correlators Φq and ∆h
q encode the

relevant quark distribution and fragmentation functions, respectively [11, 12, 18]. Accord-

ing to our prescription for the collinear momenta, the δ-function depends on the collinear

momenta k̃ and l̃, so that integrations over dk− d2k⊥ and dl+ d2l⊥ act directly on the

correlators Φ and ∆. The leading twist part of the cross section can then be extracted

by retaining the n/ and n/ components in the Dirac structure expansion of the integrated

correlators,

∫

dk−d2k⊥ Φq(p, k) =
1

2
fq(x)n/ + . . . , (2.13a)

∫

dl+d2l⊥ ∆h
q (l, ph) =

1

2
Dh

q (z)n/ + . . . , (2.13b)

where the dots indicate contributions of higher twist [20]. The nonperturbative quark dis-

tribution function fq(x) and quark-to-hadron fragmentation function Dh
q (z) are explicitly

– 6 –
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defined as

fq(x) =
1

2

∫

dk−d2k⊥ Tr
[

γ+Φq(p, k)
]

k+=xp+

LC
=

1

2

∫

dw−

2π
eixp+w−〈N |ψq(0) γ

+ ψq(w
−n)|N〉 , (2.14a)

Dh
q (z) =

z

2

∫

dl+d2l⊥ Tr
[

γ−∆h
q (l, ph)

]

l−=p−
h

/z

LC
=
z

2

∑

X

∫

dw+

2π
ei(p

−

h
/z)w+〈0|ψq(w

+n)|h,X〉〈h,X|ψq(0)γ
−|0〉 , (2.14b)

where “LC” denotes use of the light-cone gauge, and the fragmentation function is normal-

ized such that
∑

h

∫ 1
0 dz z D

h
q (z) = 1 [18].

From eq. (2.12) the energy-momentum conserving δ-function can be decomposed along

the plus, minus, and transverse components of the light-cone momentum. The plus and

minus components yield a product of δ-functions that fix x = ξh and z = ζh, while the

transverse component constrains the transverse momentum of the scattered quark to van-

ish, which restricts the produced hadrons to be purely longitudinal, ph⊥ = z l⊥ = 0.

Hadrons with nonzero transverse momentum can be generated from higher order pertur-

bative QCD processes, or from intrinsic transverse momentum in the parton distribution

functions, as in the case of transverse momentum dependent distributions [20], but are not

considered in this work. The resulting hadron tensor in the presence of hadron mass effects,

2MW µν(p, q, ph) =
ζh
4

∑

q

e2q δ
(2)(p⊥)Tr [n/γµn/γν ] fq(ξh)Dh

q (ζh) , (2.15)

is then factorized into a product of parton distribution and fragmentation functions evalu-

ated at the finite-Q2 scaling variables ξh and ζh, instead of xB and zh as would be obtained

in the massless case, and recovered from eq. (2.15) in the Bjorken limit. Note that this pre-

scription is the same as that used in ref. [15] when discussing inclusive DIS in the presence

of jet mass corrections, and is close in spirit to that advocated in ref. [21], where the trace

is calculated as in the massless case, but overall parton momentum conservation respects

the external kinematics.

Finally, the SIDIS cross section is computed by contracting the hadron tensor with an

analogous lepton tensor [20], leading to

σ ≡ dσ

dxB dQ2 dzh
=

2πα2
s

Q4

y2

1 − ε

dζh
dzh

∑

q

e2q fq(ξh, Q
2)Dh

q (ζh, Q
2) , (2.16)

where the dependence of the functions on the scale Q2 is made explicit, and the Jacobian

dζh/dzh = (1 −M2ξ2/Q2)/(1 − ξ2M2m2
h/ζ

2
hQ

4). In eq. (2.16) the variable y defined as

y = p · q/p · pℓ, where pℓ is the lepton momentum, represents the fractional energy transfer

from the lepton to the hadron in the target rest frame (y = ν/E, with E the lepton energy),

and ε = (1− y− y2γ2/4)/(1 − y+ y2[1/2 + γ2/4]) is the ratio of longitudinal to transverse

photon flux, with γ2 = 4x2
BM

2/Q2. The cross section differential in ηh can be obtained

– 7 –
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Figure 2. Ratio of cross sections σ/σ(0) for semi-inclusive charged-pion production ((π+ + π−)/2)

as a function of zh at several Q2 values for (a) xB = 0.3 and (b) xB = 0.8.

using dζh/dηh = 1/(1+m2
h/ζ

2
hQ

2) instead of dζh/dzh. It is interesting to observe that since

ξh depends explicitly on mh and ζh depends on zh and xB , at finite Q2 the scattering and

fragmentation parts of the cross section (2.16) are not independent.

As a final remark we note that at the maximum allowed xB for SIDIS, eq. (2.4), the

value of ξh is smaller than ξh(xB = xmax
B ) < 1. As in the case of inclusive DIS [15], the

SIDIS cross section therefore does not vanish as xB → xmax
B , which is a manifestation of the

well-known threshold problem [1]. On the other hand, from eq. (2.10) the fragmentation

variable ζh ≤ 1, and no threshold problem appears in the fragmentation function since

D(ζh) → 0 as ζh → 1.

In the next section we shall examine the phenomenological consequences of the finite-

Q2 rescaling of the SIDIS cross section numerically.

3 Hadron mass corrections

Using the hadron mass corrected expressions for the SIDIS cross section derived above,

we next explore the dependence of the cross sections and fragmentation functions on the

fragmentation variable zh, for various xB and Q2 values and for different final state hadron

masses. We then compare the relative size of the HMCs with the experimental uncertainties

from recent SIDIS experiments at Jefferson Lab and the HERMES Collaboration, as well

as with higher energy data from the European Muon Collaboration (EMC) and HERA.

3.1 HMC phenomenology

To illustrate most directly the effects of the HMCs, in figure 2 we consider charged pion

production (average of π+ and π−) and plot as a function of zh, for different xB and

Q2, the ratio of the full cross section σ in eq. (2.16) to the cross section σ(0), defined by

taking the massless limit for the scaling variables σ(0) ≡ σ(ξh → xB, ζh → zh) and setting

dζh/dzh = 1. For the numerical computations we use the leading order CTEQ6L parton

distributions [22] and the KKP leading order fragmentation functions [23], unless otherwise

specified. The ratio at xB = 0.3 in figure 2(a) is enhanced by ≤ 20% at Q2 = 2 GeV2 for

– 8 –
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Figure 3. Ratio of the hadron mass corrected isoscalar parton distribution function fq(ξh) for

q = u+ d to the massless limit distribution f
(0)
q as a function of xB , for mh = mπ and ζh = 0.2.

zh . 0.7, but rises dramatically as zh → 1. The effect is naturally smaller at higher Q2

values, but the rise at high zh is a common feature for all kinematics. The same ratios

at xB = 0.8 in figure 2(b) show approximately an order of magnitude larger overall effect

(note the logarithmic scale!).

The small upturn in the ratios at low zh for the lowest Q2 in figure 2 can be understood

from the interplay between the finite-Q2 kinematics and the shape of the fragmentation

function. Assuming the fragmentation function is smooth, one can expand the ratio of

corrected to uncorrected functions in a Taylor series as

D(ζh)

D(zh)
≈ 1 +

D′(zh)

D(zh)
(ζh − zh) . (3.1)

The zh dependence of the HMCs arising in the fragmentation function is mostly determined

by the negative shift in the fragmentation variable (ζh−zh) and by the local rate of change

over zh of the fragmentation function. The pion fragmentation function generally behaves

as a negative power of zh at small zh, and the negative slope drives the ratio of corrected to

uncorrected fragmentation functions upward as zh → zmin
h , where |ζh−zh| is maximum. For

kaons and protons the slope of the form factor can be positive, which would suppress the

mass corrected cross section in the vicinity of zmin
h . In the limit zh → 1, on the other hand,

the ratio σ/σ(0) becomes divergent for any kinematics and any hadron species because the

cross section σ(0) ∝ D(zh) vanishes, while the rescaled cross section remains finite.

At very small values of zh the factor (1+m2
h/ζhQ

2) in the definition of ξh in eq. (2.11)

can render ξh larger than xB, suppressing the ξh-rescaled parton distributions relative to

their asymptotic limit and driving σ/σ(0) slightly below unity. As discussed below, for

heavier hadrons this effect will be more pronounced. The effect of the ξh rescaling on

the SIDIS cross section is illustrated explicitly in figure 3, where we show the ratio of

the isoscalar parton distribution functions fq, q = u + d, with [fq = fq(ξh)] and without

[f
(0)
q = fq(xB)] hadron mass corrections, as a function of xB for ζh = 0.2 and mh = mπ.

At Q2 = 2 GeV2 the mass corrected parton distribution is several times larger than the
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Figure 4. (a) Dependence of the ratio of SIDIS cross sections σ/σ(0) with and without HMCs

for different produced hadrons, h = π+ + π−, K+ +K− or p + p̄. (b) Ratio of cross sections for

h = π+ + π− for different values of the pion mass, relative to the massless cross section. In both

cases the kinematics chosen are xB = 0.3 and Q2 = 5 GeV2.

uncorrected one at xB = 0.8, and even at Q2 = 20 GeV2 the HMC is some 50%, with

the effect increasing dramatically as xB → 1. This sharp rise is analogous to that in

inclusive DIS [15], and arises from ξh being smaller than xB when the latter is large. This

is responsible for the large overall magnitude of the corrections in figure 2(b) compared

with those at xB = 0.3. In contrast, the ξh rescaling effect becomes quite small at xB . 0.3

for all the Q2 considered, and in fact drives the ratio below unity, as discussed above.

The relative importance of HMCs for different produced hadron species is illustrated

in figure 4(a), where the ratio σ/σ(0) is shown as a function of zh for xB = 0.3 and

Q2 = 5 GeV2. Over the range 0.3 . zh . 0.8 the HMCs yield an upward correction

of . 10% for the pions, but a downward correction of . 20% and . 40% for kaons

and protons/antiprotons, respectively. At lower zh the cross section ratio for the heavier

hadrons decreases dramatically because of the large suppression of the parton distribution

from the (1 +m2
h/ζhQ

2) factor in ξh, which overwhelms any other small-zh effect.

Note that in figure 4(a) the appropriate fragmentation function for each produced

hadron species has been used, which introduces a flavor dependence in the HMC because

of the different fragmentation function shapes for each hadron. To isolate the effects of

the hadron mass alone, in figure 4(b) the ratios of cross sections computed with charged

pion fragmentation functions and masses mh = mπ (= 0.139 GeV), 0.5 GeV and 1 GeV are

shown relative to the cross section with mπ = 0, for which ζh = zhξ/xB . One can see

that in general increasing the hadron mass suppresses the cross section because of the ξh
scaling, and the reshuffling of the HMC hierarchy in figure 4(a) going from low to high zh
is due to the increasingly negative large-z slope of the fragmentation functions for kaons

and protons. While the differences at the physical pion mass are very small, for larger

hadron masses ∼ 1GeV the effects can be quite significant at zh . 0.4 even for Q2 values

of several GeV2.
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Figure 5. (a) Ratio of hadron mass corrected to uncorrected fragmentation functions D/D(0) for

favored (solid) and unfavored (dotted) production of π+, for xB = 0.8 and Q2 = 2GeV2. (b)

Comparison of the hadron mass correction δHMCR to the ratio of unfavored to favored fragmen-

tation functions R = D−/D+ with experimental errors δexpR on R from the recent Jefferson Lab

experiment E00-108 [25], normalized to the central values of the data points.

3.2 Implications for experiments

One of the unique capabilities of SIDIS is the ability to tag individual quark flavors by se-

lecting specific hadrons in the final state. For example, because of its valence quark content,

production of π+ is mostly sensitive to the u quark, requiring only a single qq̄ pair creation

from the vacuum, while π− reflects mostly the d quark content of the target nucleon. This

simple picture of primary fragmentation provides a good approximation to the production

mechanism only at large zh, however, and at low zh secondary fragmentation involving

two or more qq̄ pair productions dilutes the direct flavor tagging. The primary fragmen-

tation process is parametrized by the “favored” fragmentation function D+, describing

u → π+ or d → π− hadronization, while the secondary fragmentation is parametrized by

the “unfavored” fragmentation function D−, describing u→ π− or d→ π+ hadronization.

Because the D+ and D− functions have rather different zh dependence, with unfavored

fragmentation strongly suppressed at large zh, they will be affected differently by the

hadron mass corrections: one would expect larger HMCs for the unfavored process since

the magnitude of the slope |dD(zh)/dzh| in eq. (3.1) is larger for D− than for D+. In

figure 5(a) one observes precisely this; here, we provide an upper limit (given the choice

of xB = 0.8 and Q2 = 2GeV2) to the relative size of the mass effect in D/D(0), which is

universally larger in the unfavored fragmentation function. In the numerical computations

we have used the favored and unfavored fragmentation functions from ref. [24]. At lower

xB the correction will be smaller, although the qualitative features of the effect will remain.

The relevance of the HMCs to experimental data on the ratio R = D−/D+ is expressed

in figure 5(b), which directly compares the difference δHMCR = (D−/D+)−(D−/D+)(0) to

the statistical uncertainty δexpR in the extracted values of R from the recent Jefferson Lab

experiment E00-108 [25] at xB = 0.32 and Q2 ≈ 2.5 GeV2, with both quantities normalized

to the central values of the measured R ratio. While at small zh the HMC is relatively small

compared with the experimental errors, at large zh (& 0.6) it begins to compete with the ex-
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Figure 6. Comparison of the hadron mass correction to the SIDIS cross section for charged hadron

production, δHMCσ, relative to the experimental cross section, δexpσ, with the relative experimental

uncertainty as a function of zh for (a) HERMES experiment [26] at Q2 = 2.5GeV2 and xB = 0.082,

and (b) Jefferson Lab experiment E00-108 [25] at a similar Q2 but at xB = 0.32.

perimental uncertainty, suggesting that the hadron mass here poses a non-negligible effect.

The importance of the hadron mass corrections for experimental cross sections is ex-

amined in figure 6, where we compare the calculated difference δHMCσ ≡ σ − σ(0) with

the experimental uncertainties δexpσ, normalized to the central values of the cross section

for charged hadron production from HERMES [26] and Jefferson Lab [25]. Since both ex-

periments are dominated by the semi-inclusive production of pions, so that ξh ≈ ξ, HMCs

generally produce upward shifts relative to data. The mass corrections at the HERMES

kinematics in figure 6(a), where Q2 ≈ 2.5 GeV2 and xB = 0.082, are generally very small

compared with the size of the experimental uncertainties. At higher energies, HMCs to

fixed-angle measurements by the EMC [27] at large xB values are also found to be negligi-

ble due to suppression by Q2, which increases with xB . Were these experiments conducted

at smaller angles, however, it is likely that HMCs would become important.

On the other hand, for the Jefferson Lab experiment E00-108 [25] in figure 6(b) at a

similar Q2 but larger xB = 0.32, the mass effects are approximately 2 times larger than

the experimental statistical errors. This illustrates the potentially significant impact that

HMCs can have on leading-twist analyses of SIDIS data at moderate and large xB and low

Q2. To avoid these effects one would either need to go to smaller xB or larger Q2 values,

for example afforded by the 12 GeV energy upgrade at Jefferson Lab. Alternatively, since

the HMCs are calculated and model independent, lower Q2 and higher xB data will still

yield useful leading twist information provided the mass corrections are accounted for.

Measurements at small xB ∼ 0.001 and Q2 & 12 GeV2 have been performed by the

H1 collaboration [31] at HERA, and the data presented in terms of the fragmentation

invariant ηh. The phenomenology of HMCs is markedly different in terms of ηh from that

discussed thus far in terms of zh because of the different functional forms for ζh in eqs. (2.3),

which constrains ζh > ηh, and because of the Jacobian dζh/dηh. In their analysis of the

H1 data, Albino et al. [17] included the ζh rescaling of the fragmentation process, but
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neglected the effects of the target mass, which would be problematic for heavier hadrons

such as kaons and protons. The H1 Collaboration measured charged hadron multiplicities,

dominated by pions (∼60%), with smaller contributions from kaons (∼30%) and protons

(∼10%). In the measured Q2 range the m2
h/Q

2 term in ξh is therefore strongly suppressed

and at the typically low xB values one has ξ ≈ xB , so that overall we find the HMCs to be

similar to those in ref. [17]. However, for identified kaons, and especially protons, the SIDIS

cross section would be more strongly suppressed compared to the results of ref. [17] because

ξh ≈ xB(1+m2
h/Q

2) is significantly larger than xB. This suppression may be non-negligible

for the extraction of kaon and proton fragmentation functions from small-xB data.

4 Conclusions

In this paper we have derived hadron mass corrections to semi-inclusive deep inelastic cross

sections at finite Q2 and have performed a systematic exploration of their phenomenological

consequences. Within the collinear factorization framework the modifications to the leading

order SIDIS cross sections from initial and final state masses arise from a rescaling of the

quark distribution and fragmentation functions in terms of the modified Nachtmann scaling

variable ξh and a finite-Q2 fragmentation variable ζh, respectively. The need for a modified

Nachtmann variable is dictated by the requirement that the physical kinematic thresholds

for the semi-inclusive process are explicitly respected.

We have examined the effects of the hadron mass corrections numerically at kinematics

relevant to recent experiments, finding sizable effects at both small and large values of zh,

as well as for increasing xB and mh, and low Q2. Our results emphasize the importance

of controlling for such corrections in intermediate to high-xB experiments executed at low

Q2, of which measurements at Jefferson Lab are typical, although not exclusive. We find

that the hadron mass corrections can in some cases compete with the quoted experimental

errors (as in the measurement of the ratio of unfavored to favored fragmentation functions

D−/D+) or overwhelm them (as in the cross section measurements). Due to the presence

of the modified Nachtmann variable the HMCs may also need to be considered for small-xB

collider experiments for the production of heavier hadrons such as kaons and protons, and

their effects require further study.

The most direct use of the results presented here will be in leading twist analyses of

SIDIS cross sections, where the HMCs must be included before extracting information on

parton distribution and fragmentation functions, especially at large xB and zh. Application

of this work can also be found in studies of semi-inclusive data in the nucleon resonance

region, which has been the focus of attention recently in view of understanding the workings

of quark-hadron duality [28–30].

While the present analysis has been performed at leading order in αs, in the future we

plan to extend the formalism to next-to-leading order, which will permit a more quantita-

tive treatment of transverse mass dependence of the produced hadrons, ph⊥ 6= 0. It will also

allow contact with transverse momentum dependent parton distributions, in which nonzero

parton transverse momentum, k⊥ 6= 0, is an essential element. Finally, as in the inclusive

DIS case, the SIDIS cross section corrected for hadron mass effects exhibits the threshold
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problem which renders it nonzero as xB → xmax
B . Solutions of this problem proposed in the

literature for inclusive structure functions [4, 9, 15] will be extended to SIDIS in future work.
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A Collinear frames in semi-inclusive DIS

A collinear frame in Minkowski space is defined by any two four-vectors. The intersection

of the plane where they lie with the light-cone defines the light-cone four-vectors nµ and

nµ, that satisfy n2 = n2 = 0 and n · n = 1. In SIDIS the hadronic tensor depends on

the three vectors pµ, qµ and pµ
h, which define three possible collinear frames denoted (p, q),

(ph, q) and (ph, p). The (p, q) frame is the only frame that can be defined in DIS and is the

one used in this work; the (ph, q) frame is the only one that can be defined in semi-inclusive

hadron production in e+e− collisions; and finally the (ph, p) frame is typically preferred for

analysis of transverse momentum dependent parton distributions in SIDIS.

In terms of the vectors p, q and ph one can define two fragmentation invariants,

zh =
ph · p
q · p , ηh =

2ph · q
q2

, (A.1)

which together with xB , Q2, M2 and m2
h form a complete set of scalar Lorentz invariants

in SIDIS. Because the variable ηh is defined independently of the target momentum, the

effects of the final state hadron mass will decouple from those of the target mass in all

reference frames. In contrast, zh is defined in terms of both the target and produced

hadron momenta, so that the target and hadron mass effects here will be entangled.

The light-cone fractional momentum ξ (Nachtmann variable) and the fragmentation

variable ζh are defined in terms of the plus and minus components of the momenta as in

eqs. (2.2) and (2.3a),

ξ = −q
+

p+
, ζh =

p−h
q−

. (A.2)

We use these definitions in all three frames; however, in each frame the light-cone vectors

(and therefore the plus and minus components of the four-momenta) will be different. In

the following we discuss each of the three collinear frames and the consequences within

each frame of the choice of fragmentation invariant.
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(p, q) frame. In this frame the external vectors can be decomposed in terms of the

light-cone vectors n and n as in eqs. (2.1),

pµ = p+nµ +
M2

2p+
nµ , (A.3a)

qµ = −ξp+nµ +
Q2

2ξp+
nµ , (A.3b)

pµ
h =

m2
h⊥

ζhQ2/ξ
p+nµ + ζh

Q2

2ξp+
nµ + pµ

h⊥ , (A.3c)

where m2
h⊥ = m2

h − p2
h⊥ = m2

h + p2
h⊥ is the transverse mass of the produced hadron.

Inverting the definition of xB , the Nachtmann scaling variable can be written as in eq. (2.2),

ξ =
2xB

1 +
√

1 + 4x2
BM

2/Q2
. (A.4)

Similarly, the hadron fractional momentum ζh can be expressed in terms of either the

fragmentation invariant zh,

ζh =
zh
2

ξ

xB

(

1 +

√

1 − 4
x2

B

z2
h

M2m2
h⊥

Q4

)

, (A.5)

or in terms of ηh,

ζh =
ηh

2

(

1 +

√

1 + 4
1

η2
h

m2
h⊥

Q2

)

. (A.6)

One can show that for any finite ζh the variable zh → ηh in the Bjorken limit. This is

obviously true in any frame.

(ph, q) frame. In this frame, used in ref. [17] for example, the external SIDIS vectors

are defined as

pµ = p+nµ +
M2

⊥

2p+
nµ + pµ

⊥ , (A.7a)

qµ = −ξp+nµ +
Q2

2ξp+
nµ , (A.7b)

pµ
h =

m2
h

ζhQ2/ξ
p+nµ + ζh

Q2

2ξp+
nµ , (A.7c)

where M2
⊥ = M2 − p2

⊥ = M2 + p2
⊥ is the transverse mass of the target nucleon. The

Nachtmann variable in this case is given by

ξ =
2xB

1 +
√

1 + 4x2
BM

2
⊥/Q

2
, (A.8)
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which, in contrast to its definition in the (p, q) frame, depends explicitly on the transverse

mass of the target nucleon. Furthermore, in terms of the fragmentation invariant zh, the

finite-Q2 fragmentation variable ζh is given by

ζh =
zh
2

ξ

xB

(

1 +

√

1 − 4
x2

B

z2
h

M2
⊥m

2
h

Q4

)

, (A.9)

or in terms of ηh by

ζh =
ηh

2

(

1 +

√

1 + 4
1

η2
h

m2
h

Q2

)

. (A.10)

(ph, p) frame. The external vectors in this frame, used in ref. [18] for example, are

given by

pµ = p+nµ +
M2

2p+
nµ , (A.11a)

qµ = −ξp+nµ +
Q2

⊥

2ξp+
nµ + q µ

⊥ , (A.11b)

pµ
h =

m2
h

ζhQ2/ξ
p+nµ + ζh

Q2

2ξp+
nµ , (A.11c)

where Q2
⊥ = Q2 − q2⊥ = Q2 + q2

⊥ is the transverse mass of the virtual photon. The

Nachtmann variable in this frame depends explicitly on Q2
⊥,

ξ =
Q2

⊥

Q2

2xB

1 +
√

1 + 4x2
BM

2Q2
⊥/Q

4
, (A.12)

and the finite-Q2 fragmentation variable is given by

ζh =
zh
2

ξ

xB

Q2

Q2
⊥

(

1 +

√

1 − 4
x2

B

z2
h

M2m2
h

Q4

)

, (A.13)

or

ζh =
ηh

2

Q2

Q2
⊥

(

1 +

√

1 +
4

η2
h

m2
hQ

2
⊥

Q4

)

. (A.14)

Relations between frames. In general the frames discussed here are distinct. However,

to leading order in 1/Q2 the vectors p, q and ph lie in the same plane and the three frames in

fact coincide. Comparing the (p, q) and (ph, q) frames, for example, the differences between

the transverse momenta and scaling variables can be expressed as

ph⊥ = p∗
⊥ + O(p∗2

⊥ /Q
2) , (A.15a)

ξ = ξ∗ + O(p∗2
⊥ /Q

2) , (A.15b)

ζh = ζ∗h + O(p∗2
⊥ /Q

2) , (A.15c)
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where the asterisks (∗) label quantities in the (ph, q) frame. Similar relations are applicable

also for the parton fractional momentum x and the hadron fractional momentum z. At

leading order in collinear factorization one has ph⊥ = 0 and the frames are manifestly

equivalent. Moreover, since 〈p2
h⊥〉 ≪ Q2 for ph⊥-integrated cross sections at next-to-leading

order the differences between the collinear frames should remain small. It will nevertheless

be important to check whether, and in what kinematic range, this approximation is valid.

On the other hand, for unintegrated cross sections the differences between frames become

relevant and their effects must be quantified.
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